Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

نویسندگان

  • Fatah H Alhassan
  • Umer Rashid
  • Yun Hin Taufiq-Yap
چکیده

The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Synthesis of Biodiesel From Waste Cooking Oil Catalysed by Al2O3 Impregnated with NaOH

Due to the high price of virgin vegetable oils and the drawbacks of the homogeneous catalytic transesterification, in this work an economically profitable alternative process was proposed for biodiesel synthesis in which transesterification of the low-cost waste cooking oil (WCO) with methanol in a heterogeneous system was done. Alumina impregnated with sodium hydroxide was utilized as a solid ...

متن کامل

Efficient Synthesis of Biodiesel From Waste Cooking Oil Catalysed by Al2O3 Impregnated with NaOH

Due to the high price of virgin vegetable oils and the drawbacks of the homogeneous catalytic transesterification, in this work an economically profitable alternative process was proposed for biodiesel synthesis in which transesterification of the low-cost waste cooking oil (WCO) with methanol in a heterogeneous system was done. Alumina impregnated with sodium hydroxide was utilized as a solid ...

متن کامل

A Two-step Catalytic Production of Biodiesel from Waste Cooking Oil

Waste cooking oil (WCO) was used as a potential feedstock for biodiesel production. High levels of free fatty acids (9.85% w/w) in WCO made it an undesirable substrate for direct transesterification reaction. To solve this issue, a two-step process was implemented in this research. Firstly, esterification reaction was performed in presence of sulfuric acid as a common acid catalyst to reduce th...

متن کامل

Biodiesel Production of Capparis Spinosa Oil via Trans-Esterification Reaction by Using NaOH Catalyst and Its Pilot Synthesis Design

Energy obtained from renewable sources has increased its participation in the energy matrix worldwide, and it is expected to maintain this tendency. Both in large and small scales, there have been numerous developments and research with the aim of generating fuels and energy using different raw materials such as alternative crops, algae and waste cooking oil. Capparis spinosa seed (containing 3...

متن کامل

Oxidative Coupling of Methane to Ethylene Over Sodium Promoted Manganese Oxide

Manganese oxide catalyst promoted with sodium and supported on silica exhibits fairly good activity and selectivity towards the synthesis of ethylene from methane at the optimum operating conditions. Methane and oxygen were fed into a tubular fixed bed reactor packed with catalyst under atmospheric pressure. The effects of temperature, residence time and feed composition on conversion, selectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oleo science

دوره 64 5  شماره 

صفحات  -

تاریخ انتشار 2015